Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bimetallic assemblies, $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[\mathrm{M}(\mathrm{CN})_{6}\right]_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{en}=$ $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} ; \mathbf{M}=\mathrm{Fe}, \mathrm{Co}$)

Jakob Østerberg Eriksen, Alan Hazell,* Astrid Jensen, Josua Jepsen and Rasmus Damgaard Poulsen

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000
Århus C, Denmark
Correspondence e-mail: ach@kemi.aau.dk
Received 17 November 1999
Accepted 1 February 2000
The reaction between tris(ethylenediamine)nickel(II) cations and hexacyanometallate(III) anions ($M=\mathrm{Fe}, \mathrm{Co}$) yields ordered bimetallic assemblies, catena-poly[[tris(ethylenedi-amine)nickel-bis (μ-hexacyanoiron- $\left.N, N^{\prime}\right)$] trihydrate] and catena-poly $[[\operatorname{tris}($ ethylenediamine) nickel-bis(μ-hexacyano-cobalt- $\left.\left.N, N^{\prime}\right)\right]$ trihydrate $]$, $\left[\left\{\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right\}_{3}\left\{M(\mathrm{CN})_{6}\right\}_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, in which both cis and trans $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]$ and $\left[M(\mathrm{CN})_{6}\right]$ moieties are linked to give S-shaped $\mathrm{Ni}-\mathrm{NC}-M-\mathrm{CN}-\mathrm{Ni}-\mathrm{NC}-M-\mathrm{CN}-\mathrm{Ni}$ units which are crosslinked to give ribbons parallel to the b axis. The two compounds are isomorphous with mean metalligand distances $\mathrm{Fe}-\mathrm{C}=1.940$ (3), $\mathrm{Co}-\mathrm{C}=1.844$ (3) and $\mathrm{Ni}-\mathrm{N}=2.102$ (2) \AA for the iron, and 2.105 (3) \AA for the cobalt compound. These compounds appear to be identical with those formulated as $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[M(\mathrm{CN})_{6}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [Ohba, Maruona, Okawa, Enoki \& Latour (1994). J. Am. Chem. Soc. 116, 11566-11567; Ohba, Fukita \& Okawa (1997). J. Chem. Soc. Dalton Trans. pp. 1733-1737] which were indexed on a smaller unit cell and described as disordered.

Comment

Hexacyanometallate ions $\left[M\left(\mathrm{CN}_{6}\right)\right]^{n-}$ have been shown (Dunbar \& Heintz, 1997, and references therein) to act as building blocks to provide bimetallic assemblies exhibiting spontaneous magnetization. Kou et al. (1998) have reported the synthesis of the $2: 1$ compound $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]-$ $\mathrm{NO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ which they obtained from the reaction between $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (en is ethylenediamine) and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, but they were unable to obtain crystals suitable for X-ray diffraction. Our attempts at repeating their synthesis yielded crystals which diffracted well but were found to be $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (I).

This compound contains both cis- and trans- $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]^{2+}$ cations linked to $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ anions (Fig. 1) via cyanide bridges to give S-shaped $\mathrm{Ni}-\mathrm{NC}-\mathrm{Fe}-\mathrm{CN}-\mathrm{Ni}-\mathrm{NC}-\mathrm{Fe}-\mathrm{CN}-\mathrm{Ni}$ units which are crosslinked by the terminal cis-Ni(en) $)_{2}$ to give ribbons running along the b axis (Fig. 2). Distance ranges
include: $\mathrm{Fe}-\mathrm{C} 1.929$ (2) to 1.960 (2) \AA, mean value 1.941 (3) \AA; $\mathrm{Ni}-\mathrm{N} 2.071$ (2) to 2.122 (2) \AA, mean value 2.102 (3) $\AA ; \mathrm{C}-\mathrm{N}$ (cyanide) 1.147 (2) to 1.157 (2) \AA, mean value $1.152(1) \AA$; $\mathrm{C}-\mathrm{N}$ (ethylenediamine) 1.475 (3) to 1.488 (3) \AA, mean value 1.480 (1) \AA; and $\mathrm{C}-\mathrm{C} 1.509$ (3) to 1.522 (3) \AA, mean value 1.518 (2) \AA (the uncertainties given for the mean values are the sample standard deviations of the mean). Repeating the synthesis with an excess of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ still gave the 3:2 compound.

The structure is remarkably similar to that described by Ohba et al. (1994) for $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, except that we found a unit cell twice as large as theirs, the small cell being obtained from ours by the transformation ($1,0,0,1,0.5,1,0,0.5,0$), and we believe the two compounds to be identical. We also found three waters of crystallization instead of two. Doubling the cell removes the apparent disorder of the trans $-\mathrm{Ni}(\mathrm{en})_{2}$ moiety which had previously been observed and explains the very anisotropic displacement parameters previously observed for one of the monodentate cyanide groups. The analogous $\mathrm{Co}(\mathrm{CN})_{6}$ compound was described by Ohba et al. (1997) as being isomorphous with the $\mathrm{Fe}(\mathrm{CN})_{6}$ compound. We have prepared the cobalt compound and find that it too should be described on the doubled unit cell, i.e. it is isomorphous with (I) and should be formulated as $\left[\mathrm{Ni}(\mathrm{en})_{2}\right]_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (II).

Distance ranges include: $\mathrm{Co}-\mathrm{C} 1.884$ (3) to 1.917 (3) \AA, mean value 1.899 (3) $\AA ; \mathrm{Ni}-\mathrm{N} 2.077$ (2) to 2.128 (2) \AA, mean value 2.105 (3) $\AA ; \mathrm{C}-\mathrm{N}$ (cyanide) 1.143 (4) to 1.159 (3) \AA, mean value 1.151 (1) $\AA ; \mathrm{C}-\mathrm{N}$ (ethylenediamine) 1.476 (4) to 1.486 (4) \AA, mean value 1.481 (1) \AA; and $C-C 1.507$ (4) to 1.523 (4) \AA, mean 1.514 (2) \AA. For both structures, there is a wide spread in the values obtained for the $\mathrm{Ni}-\mathrm{N}$ distances; for each cis- $\mathrm{Ni}(\mathrm{en})_{2}$ moiety, one of the $\mathrm{Ni}-\mathrm{N}$ (cyanide) bonds is short, 2.086 (2) and 2.072 (2) \AA for the iron, and 2.088 (2) and 2.077 (2) \AA for the cobalt complex. The $\mathrm{Ni}-\mathrm{N}$ (cyanide) distances for the trans- $\mathrm{Ni}(\mathrm{en})_{2}$ are also short. The curvature of the S-shaped fragments is achieved largely through the relatively large deviations from linearity at the N atoms of the cyanide groups; the $\mathrm{Ni}-\mathrm{N}-\mathrm{C}$ angles are in the range 149.7 (2)-154.4 (2) ${ }^{\circ}$ for the iron compound and 149.9 (2)$154.6(2)^{\circ}$ for the cobalt compound. Similar values are also found in $\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ (Černác et al., 1988) and in $\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2.18 \mathrm{H}_{2} \mathrm{O}$ (Černác et al., 1990), a structure which also contains both cis- and trans- $\mathrm{Ni}(\mathrm{en})_{2}$ moieties. The $\mathrm{Ni}-\mathrm{N}-\mathrm{C}-M$ groups linking the S's are closer to linearity with $\mathrm{Ni}-\mathrm{N}-\mathrm{C}$ angles of 168.1 (2) and 168.6 (2), and 168.0 (2) and $169.1(2)^{\circ}$ for the iron and cobalt complexes, respectively, and it is for these crosslinkages that the shortest $\mathrm{Ni}-\mathrm{N}$ bonds occur. As expected (Sharpe, 1981), the CN stretching

Figure 1
View of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels and H atoms have been omitted [symmetry codes: (i) $1-x, 2-y,-z$; (ii) $1-x, 1-y,-z$; (iii) $x, 1+y, z$].

Figure 2
The structure viewed parallel to the a axis. The cell chosen by Ohba et al. (1994) is shown as b^{\prime} and c^{\prime}.
frequencies are slightly lower for the iron than for the cobalt compound. We could not, however, observe any significant difference in the $\mathrm{C}-\mathrm{N}$ bond distances.

Experimental

For the preparation of $(\mathrm{I}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(0.825 \mathrm{~g}, 2.5 \mathrm{mmol})$ was added to $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.454 \mathrm{~g}, 5 \mathrm{mmol})$ and ethylenediamine $(0.901 \mathrm{mg}$,
$15 \mathrm{mmol})$ in water $(100 \mathrm{ml})$. The colour changed from violet to yellow and then brown. Black crystals appeared after 3-4 d. IR spectra (KBr disc, Perkin Elmer FT-IR spectrometer): $v(\mathrm{CN})$ 2106, 2128, $2153 \mathrm{~cm}^{-1}$. Complex (II) was prepared as for (I) except that $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ was replaced by $\mathrm{K}_{3} \mathrm{Co}(\mathrm{CN})_{6}$. The solution remained violet and violet crystals appeared after a few days. IR spectra (KBr disc): $v(\mathrm{CN}) 2118,2141,2164 \mathrm{~cm}^{-1}$.

Compound (I)

Crystal data
$\left[\left\{\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right\}_{3}\left\{\mathrm{Fe}(\mathrm{CN})_{6}\right\}_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1014.72$
Triclinic, $P \overline{1}$
$a=9.6424$ (9) \AA
$b=14.861$ (2) \AA
$c=17.021$ (2) \AA
$\alpha=107.604$ (3) ${ }^{\circ}$
$\beta=101.474$ (2) ${ }^{\circ}$
$\gamma=106.528$ (2) ${ }^{\circ}$
$V=2117.6$ (4) \AA^{3}
$Z=2$
$D_{x}=1.591 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192
reflections
$\theta=2.3-30.4^{\circ}$
$\mu=2.037 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, black
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Siemens SMART CCD diffractometer
ω rotation scans with narrow frame
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.505, T_{\max }=0.650$
19479 measured reflections

10994 independent reflections
7683 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=29^{\circ}$
$h=-9 \rightarrow 13$
$k=-20 \rightarrow 20$
$l=-23 \rightarrow 23$

Table 1
Selected bond lengths (\AA) for (I).

$\mathrm{Fe} 1-\mathrm{C} 1$	$1.941(2)$	$\mathrm{Ni} 1-\mathrm{N} 14$	$2.120(2)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$1.946(2)$	$\mathrm{Ni} 1-\mathrm{N} 15$	$2.107(2)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$1.939(2)$	$\mathrm{Ni} 1-\mathrm{N} 16$	$2.110(2)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$1.947(2)$	$\mathrm{Ni} 2-\mathrm{N} 1$	$2.071(2)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$1.934(2)$	$\mathrm{Ni} 2-\mathrm{N} 12$	$2.119(2)$
$\mathrm{Fe} 1-\mathrm{C} 6$	$1.933(2)$	$\mathrm{Ni} 2-\mathrm{N} 17$	$2.117(2)$
$\mathrm{Fe} 2-\mathrm{C} 7$	$1.937(2)$	$\mathrm{Ni} 2-\mathrm{N} 18$	$2.122(2)$
$\mathrm{Fe} 2-\mathrm{C} 8$	$1.960(2)$	$\mathrm{Ni} 2-\mathrm{N} 19$	$2.100(2)$
$\mathrm{Fe} 2-\mathrm{C} 9$	$1.929(2)$	$\mathrm{Ni} 2-\mathrm{N} 20$	$2.115(2)$
$\mathrm{Fe} 2-\mathrm{C} 10$	$1.930(2)$	$\mathrm{Ni} 3-\mathrm{N} 5$	$2.079(2)$
$\mathrm{Fe} 2-\mathrm{C} 11$	$1.947(2)$	$\mathrm{Ni} 3-\mathrm{N} 21$	$2.103(2)$
$\mathrm{Fe} 2-\mathrm{C} 12$	$1.945(2)$	$\mathrm{Ni} 3-\mathrm{N} 22$	$2.104(2)$
$\mathrm{Ni} 1-\mathrm{N} 2$	$2.117(2)$	$\mathrm{Ni} 4-\mathrm{N} 9$	$2.081(2)$
$\mathrm{Ni} 1-\mathrm{N} 11$	$2.086(2)$	$\mathrm{Ni} 4-\mathrm{N} 23$	$2.105(2)$
$\mathrm{Ni} 1-\mathrm{N} 13$	$2.113(2)$	$\mathrm{Ni} 4-\mathrm{N} 24$	$2.107(2)$

Refinement

Refinement on F
$R=0.024$
$w R=0.033$
$S=1.139$
7456 reflections
509 parameters
H -atom parameters constrained
$w=1 /\left\{\left[\sigma_{\mathrm{cs}}\left(F^{2}\right)+1.03 F^{2}\right]^{1 / 2}-|F|\right\}^{2}$
$(\Delta / \sigma)_{\max }=0.0015$
$\Delta \rho_{\max }=0.52(7) \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.37(7) \mathrm{e}^{-3}$

Extinction correction: type 1
Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: 19 (4)

Compound (II)

Crystal data

$\left[\left\{\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right\}_{3}\left\{\mathrm{Co}(\mathrm{CN})_{6}\right\}_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1020.90$
Triclinic, $P \overline{1}$
$a=9.6303$ (8) £
$b=14.787$ (1) \AA
$c=16.951$ (1) \AA
$\alpha=107.500(2)^{\circ}$
$\beta=101.464$ (2) ${ }^{\circ}$
$\gamma=106.652(2)^{\circ}$
$V=2095.6(3) \AA^{3}$

$Z=2$

$D_{x}=1.618 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7727
reflections
$\theta=1.6-29.6^{\circ}$
$\mu=2.159 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Needle, violet
$0.52 \times 0.18 \times 0.18 \mathrm{~mm}$

Data collection

Siemens SMART CCD diffractometer
ω rotation scans with narrow frame
Absorption correction: multi-scan (SADABS: Sheldrick, 1996)
$T_{\text {min }}=0.382, T_{\text {max }}=0.678$
17341 measured reflections
9897 independent reflections
6342 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28^{\circ}$
$h=-13 \rightarrow 13$
$k=-20 \rightarrow 14$

Refinement

Refinement on F
$R=0.028$
$w R=0.040$
$S=1.385$
6342 reflections
509 parameters
H -atom parameters constrained $w=1 /\left\{\left[\sigma_{\mathrm{cs}}\left(F^{2}\right)+1.03 F^{2}\right]^{1 / 2}-|F|\right\}^{2}$
$(\Delta / \sigma)_{\max }=0.0011$
$\Delta \rho_{\max }=1.16(8) \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.63(8) \mathrm{e}^{-3}$

Extinction correction: type 1
Lorentzian isotropic (Becker \&
Coppens, 1974)
Extinction coefficient: 18 (5)

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT;

Table 2
Selected bond lengths (Å) for (II).

$\mathrm{Co} 1-\mathrm{C} 1$	$1.898(3)$	$\mathrm{Ni} 1-\mathrm{N} 14$	$2.120(2)$
$\mathrm{Co} 1-\mathrm{C} 2$	$1.907(3)$	$\mathrm{Ni} 1-\mathrm{N} 15$	$2.110(2)$
$\mathrm{Co} 1-\mathrm{C} 3$	$1.893(3)$	$\mathrm{Ni} 1-\mathrm{N} 16$	$2.110(2)$
$\mathrm{Co} 1-\mathrm{C} 4$	$1.904(3)$	$\mathrm{Ni} 2-\mathrm{N} 1$	$2.077(2)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.897(3)$	$\mathrm{Ni} 2-\mathrm{N} 12$	$2.123(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.891(3)$	$\mathrm{Ni} 2-\mathrm{N} 17$	$2.121(2)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.893(3)$	$\mathrm{Ni} 2-\mathrm{N} 19$	$2.105(2)$
$\mathrm{Co} 2-\mathrm{C} 8$	$1.917(3)$	$\mathrm{Ni} 2-\mathrm{N} 20$	$2.116(2)$
$\mathrm{Co} 2-\mathrm{C} 9$	$1.884(3)$	$\mathrm{Ni} 2-\mathrm{N} 18$	$2.128(2)$
$\mathrm{Co} 2-\mathrm{C} 10$	$1.893(3)$	$\mathrm{Ni} 3-\mathrm{N} 5$	$2.091(2)$
$\mathrm{Co} 2-\mathrm{C} 11$	$1.906(3)$	$\mathrm{Ni} 3-\mathrm{N} 21$	$2.102(2)$
$\mathrm{Co} 2-\mathrm{C} 12$	$1.903(3)$	$\mathrm{Ni} 3-\mathrm{N} 22$	$2.103(2)$
$\mathrm{Ni} 1-\mathrm{N} 2$	$2.127(2)$	$\mathrm{Ni} 4-\mathrm{N} 9$	$2.090(2)$
$\mathrm{Ni} 1-\mathrm{N} 11$	$2.088(2)$	$\mathrm{Ni} 4-\mathrm{N} 23$	$2.102(3)$
$\mathrm{Ni} 1-\mathrm{N} 13$	$2.111(2)$	$\mathrm{Ni} 3-\mathrm{N} 24$	$2.104(2)$

program(s) used to solve structure: SIR97 (Cascarano et al., 1996) and KRYSTAL (Hazell, 1995); program(s) used to refine structure: modified ORFLS (Busing et al., 1962) and KRYSTAL; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and KRYSTAL; software used to prepare material for publication: KRYSTAL.

We are indebted to the Carlsberg Foundation for the diffractometer and the cooling device and to Karen Skov for recording the IR spectra.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1101). Services for accessing these data are described at the back of the journal.

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-153.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Cascarano, G., Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Siliqi, D., Burla, M. C., Polidori, G. \& Camalli, M. (1996). Acta Cryst. A52, C-79.
Černák, J., Chomič, J., Baloghová, D. \& Dunaj-Jurčo, M. (1988). Acta Cryst. C44, 1902-1905.
Černák, J., Chomič, J., Domiano, P., Ori, O. \& Andreetti, G. D. (1990). Acta Cryst. C46, 2103-2107.
Dunbar, K. R. \& Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 283-391.
Hazell, A. (1995). KRYSTAL. Aarhus University, Denmark.
Kou, H.-Z., Bu, W.-M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. \& Wang, G.-L. (1998). J. Chem. Soc. Dalton Trans. pp. 4161-4164.

Ohba, M., Fukita, N. \& Okawa, H. (1997). J. Chem. Soc. Dalton Trans. pp. 1733-1737.
Ohba, M., Maruona, N., Okawa, H., Enoki, T. \& Latour, J.-M. (1994). J. Am. Chem. Soc. 116, 11566-11567.
Sharpe, A. G. (1981). Inorganic Chemistry, p. 541. London and New York: Longman.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

